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We have investigated the nearest grid point (NGP) and the cloud in cell (CIC) particle 
models of a plasma, together with two other models obtained from the above by smooth- 
ing the potential before use (HNGP and HCIC models). The collision time is found to 
be only slightly dependent on the model and is given to 20 % by (~~~ii/~&) = n(hna $ 
Wz), where n is the density and W the width of the particles (W = H, the mesh spacing 
for NGP and CIC; W = 2H for HNGP and HCIC). The ratio of electric-field energy 
to particle energy is given by <F>/SV f nmvth - z - 0.12/n(hnz + Wz). Stochastic heating 
due to the finite size of the space mesh and the time step DT is correlated as a function 
of H/X, and wnBDT. An optimum path in this parameter plane is found to be(w,&ll)opb = 
min &H/AD, 11. On this path the ratio of the heating time (the time for the average 
kinetic energy of an electron to increase by +kT) to the collision time is (~&n) = 
K2/(H/XD)z, where KS = 2.1(NGP), 6.4 (HNGP), 41 (CXC), 200 (HCIC). The models 
are compared on the basis of the cost in computer time per square collisionless plasma 
period per mesh cell. If we permit computing provided (~n/~~u) > 10 (or better than 
2.5 % energy conservation in a collision time) then the most economic model to use is 
given by the tableau: 

0 + NGP + 0.45 + HNGP + 0.8 + CIC --f 2.0 c RCIC --f 4.5, 

where the name of the model is written between the values of N/X, for which it is 
best suited. Alternatively, if we accept a model provided (+n/~~u) > 1 (or better than 
25 % energy conservation in a collision time), then the favoured ranges for the different 
models are 

0 +- NGP + 1.5 + HNGP --z 2.5 + CIC + 6.5 + IICIC + 14. 

None of the models considered may be used for H/X, > 14. 

I. INTRODUCTION 

It is well known [I] that particle models of a plasma grossly exaggerate the 
collision rate of the system they simulate, due to the small number of particles 
used in the model compared with the real system. Such models also invariably heat 

* Present address: University of Reading, Reading, Berkshire, England. 
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up due to the presence of stochastic error fields arising from the finite size of the 
space and time steps (H, DT). This lack of energy conservation is measured by the 
heating time, which is the time for the average kinetic energy of an electron in the 
model to increase by $kT. 

When using particle models it is therefore important to know the magnitude of 
both the collision and heating times. In this paper we report measurements of these 
times for a wide range of parameters in a thermal two-dimensional particle model 
of a plasma. The measurements are correlated into simple empirical formulae good 
to 20 to 30 % which may be used to predict these effects or as a check on theory. 

These measurements extend the results previously reported by the author [2] to a 
thermal plasma and give a comprehensive correlation of the heating time which 
was previously only touched upon. Also, measurements are given for two additional 
models (HNGP and HCIC) obtained from the nearest grid point (NGP) and cloud 
in cell (CIC) models by smoothing. The range of parameters studied has been 
increased to include values of (H/A,) w 10, where hn is the Debye shielding length. 

The general conclusions remain unchanged, namely, that the collision time is 
primarily dependent on the number of particles used in the simulation and is not 
dependent on the type of model used. That is to say the slow1 but accurate CIC 
model has, within the accuracy of the measurements, the same collision time as the 
fast and rough NGP model. The difference between the models lies rather in the 
heating time which is likely to be ten times longer for the quiet CIC model than for 
the noisy NGP model. 

To permit a rational comparison between models we introduce in Section V the 
concept of the cost (in computer time) per square collisionless plasma period per 
mesh cell. This quantity is a measure of the economy of the calculation and includes 
the greater computational time per step required for a CIC calculation compared 
with an NGP calculation. On the basis of this measure we find, broadly speaking, 
that the NGP model is most economic for H/A, < - 1 and the CIC model for the 
H/h= > -1. None of the models compared could be used forH/&, > -14. 

II. MEASUREMENT TECHNIQUE 

In order to measure the collision time we set up a plasma configuration in which 
the orbits of all particles would be straight lines in the Vlasov collisionless limit. 
We can then measure the collisional effects by measuring the deviations of actual 
particle orbits from straight lines. Such a condition is a doubly periodic maxwellian 
plasma with a uniform density distribution and no imposed external fields. In such 
a system the collective thermal E-field fluctuations and the binary collision rate are 

1 Slow and fast refer to the speed of calculation on the computer. 
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inversely proportional to the number of particles per Debye cube. IIence, in the 
Vlasov limit of an infinite number of particles, the E-field and collision rate become 
zero and particle orbits are straight lines. 

In measuring deviations from straight line orbits, our measurements make n 
distinction between deflections due to collective and binary effects, indeed it woul 
be very difficult to do so in an interacting system. Rather we take the view that we 
are measuring what in practice one wishes to know, namely the total deflection, 
whatever its cause, occurring in an actual interacting system due to using only a 
finite number of particles in its representation. 

The quantities measured may be understood by reference to Fig. 1 which shows 
typical orbits of four electrons and four ions in the computer plasma. The initial 
velocity for each particle is selected by a pseudo-random number generator and 

ORBITS 
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FIG. 1. Typical orbits of simulated electrons and ions, showing the quantities measured. 

defines the parallel direction for that particle. This direction is different, in general, 
for all particles and defines the orbit the particle would describe if there were no 
collisional effects. After a time, t, the velocity v(t) of each particle is resolved with 
respect to the parallel direction for that particle2 to obtain the following quantities: 

2 The parallel direction is easily recreated in the computer by regenerating the original pseudo- 
random number sequence. One need not store the initial directions of all particles. 
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u ,, (t) is the component of velocity in the parallel direction; 

v,(t) is the component of velocity at right angles to the parallel direction; 

y(t) is angular deflection from the parallel direction; 

h(t) is &~~(u~(t) - ~~(0)) - the change in kinetic energy from its initial value. 

The following characteristic times can then be defined and measured: 

Deflection time r, , (@(T,)>~/” = 3712. 

v-perp time rVL , (~~~(3-~~))~/~ = (v,,(O)). 

Slowing-down time 7, , 

$ (v,,(t)) = <* at t=O. 

Thermalization time 7th , (h2(r&)1/2 = +mvz,, = +kT. 

Heating time rH , (h(rH)) = imu& = $kT. 

The angled brackets mean an average over many particles, separate averages being 
kept for ions and electrons, and vth = (kT/m)lJ2. Figures 2 to 4 show typical 
measurements of the deflection, slowing down and heating time. 

The first four quantities defined 7, , rol , rS, and 7th are collisional effects which 
exist for a real plasma with exact energy conservation. These will be referred to 
collectively as collision or relaxation times. In Ref. [2] it is shown that these 
quantities do not differ significantly from one another provided that the plasma 

DEFLECTION TIME 

FIG. 2. Typical results obtained for the measurement of deflection time. The dots are measured 
values. Note the roughly square root growth of angle with time. 
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FIG. 3. Typical results obtained for the measurement of slowing-down time. The dots are 
measured values. 

TIME STEPS 

HEATING TIME -DATUM V,,OT/H -3.0 

FIG. 4. Typical results obtained for the measurement of heating time. Note the linear growth 
of kinetic energy with time. 
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is not too noisy. However, the slowing-down measure is least effected by random 
noise fields since such fields do not affect (v ,, (t))-whereas they strongly affect, e.g., 
(y”(t)) and the deflection time. Since in this extended work we are interested in 
measuring noisy systems we have adopted 7, as the measure of collisional effects. We 
also concentrate our attention here on the electron quantities only, since in any 
practical situation the electron collision or heating time will be the shortest and 
will give the limiting condition. 

The fifth quantity TH , the heating time, measures the lack of energy conservation 
in the computer model and would be infinite in a real plasma. The heating time 
depends in a complicated way on the computational errors introduced in the 
computer model, notably the truncation errors due to the finite size of the space 
and time steps. 

The linear increase of energy with time which is seen in Fig. 4, is evidence that 
the heating is of stochastic origin. Suppose there was a random field fluctuation of 
square magnitude <E2> and correlation time T~,,~~, then the change in kinetic 
energy in time t would be 

L&E = $ m((&Jz + (h,)z) = $ (1 E, dt)” = $ (E2> ~~~~~~~ 

which is a linear increase in time. 
The heating time is the time for the average kinetic energy of an electron to 

increase by +kT. The initial average kinetic energy of an electron (or an ion) is 
kT (&kT for each degree of freedom) and, since the potential energy is negligible, 
the heating time is also the time for the total energy of the system to increase by 25%. 

III. MODELS COMPARED 

A particle model of a plasma stores the coordinates (x, y, O, , ~3” of a large 
number of simulated electrons and ions and advances them stepwise in time in a 
three-stage process as follows: 

(1) From the particle positions, build up a charge distribution on a spatial 
(usually uniform) grid of mesh points, 

(2) Solve a finite difference form of Poisson’s equation to obtain the electro- 
static potential at each mesh point, 

(3) Difference the potential values to obtain the electric field acting on each 
particle. Accelerate each particle for a time interval DT according to Newton’s 
laws of motion to obtain (x, y, D@ , v~)*+~~, the cycle then repeats at stage 1. We use 
the simplest explicit finite-difference approximation (ref. [3], p. 182) for the 
integration of Newton’s laws. This scheme is time-reversible as favoured by 
Buneman [ 141. 
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Particle models differ primarily in the way in which the charge distribution is 
obtained in stage 1 and the electric field is obtained in stage 2. Models also differ in 
the particular finite difference form used in stage 2, whether it is the five-point or 
one of several alternative nine-point approximations. In addition some models 
avoid finite-difference errors and solve Poisson’s equation by Fourier transfo~ma~ 
tion on the original differential equation. However similar numerical errors arise 
due to the truncation of the Fourier expansion. The effect of these differences on the 
collision and heating rates is thought to be small and is not considered here. 
results are for a model using the standard five-point difference approximation to 
Poisson’s equation: 

%,j-1 + Fi,j+1 + yi-l,j + %+l,f - 4qJi.j = %ii,f 9 (11 

where y’i,j and qi,j are the electrostatic potential and charge at the (i,j) mesh point. 
A discussion of Direct and Iterative methods for the solution of these difference 
equations is given in Ref. [3]. 

We consider four models. In the simplest or nearest grid point model (NGP) [I], 
the whole charge of a particle is assigned to the nearest grid point during stage 1 
and the field in stage 3 is taken to be the field at the nearest grid point. The field at 
the grid point (i,j) being calculated from the simplest difference approx~rn~t~~~~ 
e.g., the x-field at the (i, j) grid point is given by 

tmi,j E B-w - %+1,j * tzj 

In this way the field is the same for all particles within a square cell of side 
surrounding the grid point. The relation between grid points and cells is shown in 
Fig. 5. 

& c. I, c. 

(NEAREST GRID POINT1 (CLOUD IN CELL) 
BUNEMAN, HOCKNEY et. al. BIRDSALL, FUSS et. al 

FIG. 5. The relation between cells, mesh (or grid) point and clouds in the NGP and CIC 
models. The region is divided into cells by straight lines. There is a mesh point shown by a cross 
at the center of each cell. The dot shows the coordinates of a particle. In CIC this is the center 
of a square cloud. The shaded areas show the portions of the cloud in each cell, and the arrows 

the mesh points with which the parts are associated, 
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The law of force between two particles in the NGP model is shown at the top left 
of Fig. 6. One particle lies on a grid point and we plot the force on a second particle 
as a function of distance from the first as the second particle moves parallel to the 
grid lines. Of course, we obtain slightly different results for different positions of the 
first particle and for different lines of approach for the second particle, but the 
essential features of the force law are unchanged. The main features of the NGP 
interaction are a staircase force law with the force changing abruptly as cell 
boundaries are crossed and remaining constant within a cell, and the large force 
changes that occur between separations of 0, 1, and 2H. 

CIC 

UNSMOOTHED 

Cl 0 2 2 4 4 6 6 80 80 2 2 4 4 6 6 8 8 
X/H X/H X/H X/H 

HNGP HCIC 
SMOOTHED 

HNGP HCIC 
SMOOTHED 

FIG. 6. The force F(x/H) (arbitrary units) between two particles with separation x/H for the 
NGP, CIC, HNGP, and HCIC models. The dots show the (x/H)-l interaction between point 
charges. One particle is at a mesh point. 

In the Cloud in Cell (UC) model [4] the coordinates of a particle are considered 
as the center of a uniform square cloud of charge. In stage 1, the charge of this 
cloud is apportioned to the four nearest grid points in proportion to the area of 
the cloud that lies within the cell centered on each of the four neighboring mesh 
points (see the right-hand part of Fig. 5). In stage 3, the force is obtained as the 
weighted average of the field at the four nearest grid points, the weights being the 
areas of the cloud within the cell associated with each grid point. This form of 
averaging is the same as a bi-linear interpolation between the field values at the 
grid points to give the field at the coordinates of the particle. For two particles 
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moving parallel to the grid lines, this is the same as linear interpolation. Hence, the 
CIC force law shown at the top right of Fig. 6 is a linear interpolation between the 
NGP values obtained when the second particle lies on a mesh point. 

The force Iaws shown in Fig. 6 are calculated using the potential at a distance 
LE. from a unit charge sitting at a mesh point as 

cp(Ai) = -0.8 Ai = 0, 

= 1.15 log,, Lli Ai >O, 

which is found to be a reasonably good approximation to that obtained from the 
five-point difference approximation. 

Both the NGP and CIC force laws may be considered as different orders of 
approximation to the exact law of force between two interacting charge clouds of 
width W. 

The force between two such clouds is clearly zero by symmetry if their separation 
is zero, rises to a maximum at or near a separation of W, when there is no further 
overlapping of charge, and then decays eventually as Y-I for large separations 
Y > W. The detailed shape of the law will depend on the exact shape and density 
distribution of the cloud but the essential features will be the same. The NGP 
force law is approximately correct at the mesh points and uses zero order inter- 
polation between these values. The CIC force law is a first order or linear inter- 
polation between the mesh point values. For both NGP and ClC, the maximum 
force is at r = H hence for both these models the particle width W is the mesh size 
H. 

Although the original paper on the two-dimensional NGP method [l] inter- 
preted the law of force as an approximation to the law of interaction of clouds 
of charge, it was felt by some authors3 that this method was equivalent to the use of 
zero sized particles (e.g. [4] and [6]). The latter interpretation seems unreasonable 
as the force of interaction between point or zero sized particles goes to iafinity as 
their separation goes to zero whereas the force of interation in the NGP model goes 
to zero in analogy to the interaction between finite sized clouds. The experimental 
results in Section IV confirm the necessity to associate a finite width to the NGP 
particle in order to correlate the results satisfactorily, and we find that a width of H 
for both NGP and CIC models gives a good correlation. 

For both NGP and CIC the maximum error in the force calculation occurs near 
separations Y = H due to the large spike in the force at this separation. This error 
contributes to the noise in the simulation and increases the stochastic heating rate. 
If one is prepared to give up a little spatial resolution by simulating wider particles 

3Birdsall and Fuss, private communication, wish to say: “‘ZSP (Zero sized particles) was 
incorrectly applied to NGP in our paper. It is clear from our Figs. 1, 5, 5, 7, 9 that NGP particles 
have finite size. R. W. Hackney was correct in his original concept of NGP particles as clouds.” 
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this noise can be reduced. Particles with width W = 2Hfor example would not have 
the high spike at Y = H since at this separation their charge clouds would overlap. 

The cheapest way4 to increase the size of the particles in either model is to 
introduce some smoothing of the potential calculated in stage 2 before it is used to 
obtain electric fields in stage 3. No change is made to the manner of assigning 
charge in stage 1 or the manner of calculating fields in stage 3. 

We have examined several smoothing schemes from the point of view of their 
computational simplicity and the similarity of the resulting force law to that of 
interacting clouds of width 2H. The scheme we prefer, which we call “Hollow 
Particle Smoothing,” replaces the potential at a point by the average of its eight 
nearest neighbors, there being no contribution from the point itself. If q& is the 
smoothed potential and pi,j the original, then 

gj = (Pi-l,i + %+1,j + %+1 + %,f+l + yi-l,j-1 

+ pi--l,j+l + R+I,G1 + 93i+1,j+JP. (3) 

The smoothed potential which is obtained is the same as that which would be 
obtained without smoothing if the charge at each point were removed and placed 
on the eight neighboring points. In this sense the particle is hollow. 

With this method of smoothing the force law for Hollow NGP (HNGP) and 
Hollow CIC (HCIC) is shown at the bottom of Fig. 6. The force spike at r = His 
now removed and the law of interaction approximates that of particles of width 
W = 2H. If a contribution is included from the point itself, vi,? , the step at r = H 
is found to be higher. Since the field within a uniform cylindrical cloud of charge 
rises linearly from r = 0 to r = 2H, it was felt better as well as simpler to omitt 
any contribution from the point itself. 

We have described a local smoothing procedure in real space. It is instructive to 
consider the effect of this smoothing on different wave lengths of the potential in 
wave number space. On an (m x m) mesh the spatial harmonics are of the form, 

g5k,z = cs (Jg) cs (F), (4) 

where CS stands for either the sine or cosine function and k and I are the wave 
numbers in the x and y directions, then the Fourier transform of Eq. (3) is 

$$I = KG, 1) pk,Z , (5) 

where K(k, Z) = ((2 cos(2rk/m) + 1)(2 cos(27rZ/~ + 1) - 1}/8. The local smoothing 
in real space is thus equivalent to a global shaping of the Fourier transform in 
k-space with the function K(k, 1). 

4 From the point of view of computer time. 
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The use of finite sized particles has been advocated by Dawson, Birdsall, et al 
and Hackney. Dawson [S] gives theory for a one-dimensional model and Hackney 
[l] gives a rough theory of collisional effects based on the finite size of the particles 
in two-dimensions. A much more complete theory of the interaction of such 
particles in one, two and three dimensions is given by Birdsail, Langdon, and 
Qkuda 16-91. 

IV. EXPERIMENTAL RESULTS 

A computer plasma differs from a real plasma in the density, n, of particles used 
and in the finite discretization of space with a mesh size ET, and of time with a step 
DT. Dimensionless forms of these variables are used to correlate the experimental 
results. These are: 

(1) NC = n(hD2 + Wz), the number that characterizes the collision time. 
It varies from the number of particles per Debye square, for small particles with 
W < hn , to the number of clouds within a cloud, for large particles with W> .& ) 

(2) W/X, , the number of Debye lengths per cell of the spatial grid, and 

(3) wseDT, the fraction of a Debye length travelled by a thermal particle in a 
timestep. 

Collision Time 

We find that the collision time (as measured by the slowing-down time) can be 
represented as a function of NC alone for the four models being considered. Any 
dependence on H (other than through W) and DT is less than the uncertainty of 
measurement. Figure 7 shows 73 measurements which can be represented by the 
relation 

where 

and 

with 

Kl = 0.98 + 0.20, 

and 

W=H for NGP and GIG 

W=2H for HNGP and IICIC 
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FIG. 7. The correlation of all slowing-down time measurements with NO = n(ADZ + W*) 
for the four models NGP, CIC, HNGP, HCIC. 

We quote above the average and root mean square deviation of the values of Kl 
for each measured point. The measurements range from 0.25 < AT, < 43 and 
contain cases for which 0.12 < W/X, < 32. 

The above value of Kl is in good agreement with the value of 1.27 obtained using 
the Fermi impulse approximation Ref. [2]. The difference in the value of Kl given 
in that reference to that given here is principally due to the present inclusion of a 
realistic thermal distribution of velocities rather than the square distribution used 
in Ref. [2]. 

As evidence that a width of H must be attributed to an NGP particles we can 
quote a case for which H/AD = 2 (CASE P126) 

(T&.,3 = 3.58 and nXD2 = 0.61, nH2 = 2.44, 

leading to values of Kl for different widths of 

Kl = 0.17, N, = 0.61 if W = 0 (a zero sized particle), 

Kl = 0.85, NC = 3.05 W=H*, 

Kl = 2.90, NC = 10.37 W=2H. 

Since Kl e 1 for cases in which the width is unimportant (W/h,, < 1) it is clear 
that H is the only possible choice for the width of an NGP particle. 

Similar cases indicating the required width for the other models are: 

CIC with (H/X,) = 8 (CASE P91) 
(T~/T~~) = 1.35, nh2, = 0.02, nH2 = 1.22 



leading 

leading to 

leading to 
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Kl = 0.014, N, = 0.02 if W=O 

Kl = 0.92, NC = 1.24 if W=N* 

Kl = 3.6, NC = 4.90 if W==2H 

HNGP with (H/X,) = 2 (CASE P53) 

(Ts/7%w) = 8.53, ?zhD2 = 0.61, nW2 = 2.44 

Kl = 0.071, N, = 0.61 if W=O 

Kl = 0.35, NC = 3.05 if W=H 

Kl = 1.23, NC = 10.37 if W=2H* 

HCIC with (H/h,) = 8 (CASE Pill) 

(ThmJ = 1.95, iAD2 = 0.008, nH2 = 0.49 

Kl = 0.004, NC = 0.008 if W=O 

Kl = 0.25, NC = 0.5 if W=H 

Kl = 1.01, N, = 1.97 if W = 2N*. 

The choice of the starred values of W = H (NGP and CIC), W = 2H (HNGP 
and HCIC) is incontestable. 

The successful correlation of the collision results with the single parameter N, 
for particle sizes greater than A, confirms experimentally the result of Dawson, 
Birdsall et al. that in such cases the particle width plays the role of the shielding 
distance and hence the characteristic number determining collisional effects 
corresponding to the number of particles per Debye square is the number of 
particles within a particle. 

Fluctuations 

We have also measured the time average of the squared E-field fluctuations at a 
fixed point in the computer plasma and expressed this electric-field energy as a 
ratio to the particle kinetic energy. This ratio like the collision time depends 
primarily on the value of N, and we find 

<-G2Y8~ K2 =- 
nmv& NC (71 

where KS 0.12 f 0.04. 
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The value of IL2 is the average of 63 measurements chosen from the total of 
73 measurements by elimination of those for which (+rn/~J < 1. The cases were 
eliminated because the stochastic heating makes the fluctuation measurement 
unreliable. 

The measured points are plotted in Fig. 8 and show a somewhat greater scatter 
than the collision measurements due to the fact that random noise contributes to 
the value of (E2) but does not affect (v ,, > and the measurement of TV . 

NC=& +W*) 

FIG. 8. The correlation of squared electric field fluctuations with IV, = n(hn* + W2) for 
measurements with (T&J > 1. 

The above results may be compared with theory by using the two-dimensional 
form of the expression given by Montgomery and Tidman ([lo, Chapter 81). This is 

(E2) kT fm dk, dk, -=- 
8%. 2 1s --m @T)~ D + (kz2 -:- kg21 h21 * 

Using the relations kT = mu& (definition of vth), (E2) = 
and letting u = k&, one obtains 

<Enz>/Sr 1 +m du, du, =- 
nmv& 167P IS -co [l + %2 + &t21 

The integral may be evaluated with respect to 1 u j and taking the limits as 
u = Umin and urnaX we obtain 
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In a finite mesh model Umin = (2n/m)(hu/H) and Uma = n(hu/H). Taking a case 
with small particles (P39 with H/h,-, = 0.16) for which the theory may be expected 
to apply one obtains 

<-&c2>/871. 0.112 -- 
nmv& nhD2 ’ 

which is in good agreement with the measured values. 

Heating-time 

Unlike the collision time, the heating time is strongly dependent on H and DT 
and this is the dependence we wish to examine. The dependence on iV, is the same 

as the dependence of collision time on N, and we eliminated this variation by 
concentrating our attention on the ratio of heating time to collision time, (T&J. 
It is in any case the ratio of these quantities that is important since this determines 
the number of collision times that can be computed before the violation of energy 
conservation becomes serious. 

In the subsequent discussion we assume that we wish to simulate a collisionless 
plasma and that we wish to integrate the model forward in time for as long as 
possible before the unphysical collisional effects of the model dominate the 
situation. For convenience of discussion we choose to consider a plasma to be 
collisionless up to a time T, after the initiation of the simulation (of course one 
could be more conservative and say up to a time 0.1 7, or 0.01 T, in which the 
case the appropriate ‘safety’ factors can easily be inserted). 

The ratio (TJT,) is important because it determines the amount of ene 
conservation if the model is integrated forward for the maximum useful time of 
With our definitions of mu, a model with (r&J = 1 will conserve energy to 
25 % in a time interval if 7, . Similarly a model with (T~/T,) = 10 will conserve 
energy to 2.5% in a time interval of 7,. Since the amount of heating is proportional 
to the time interval the extent of energy conservation may be calculated by simple 
proportion if the time interval concerned is some fraction or multiple of T, . IIence, 
for a model to have acceptable energy conservation for a time of integration up 
to a collision time, as would be desirable in a collisionless simulation, a reasonable 
condition is (+rs) > 1. 

Of course it is possible to use a model for which (-rH/Ts) < 1 provided the time 
of integration was less than ru and this may be forced upon the user if H/AZ, > 1 
(see Fig. 10). If H/X, < 1 the results to follow suggest that it would be better to 
increase (T~/T~) by making H/h, M 2w,, DT by increasing H or decreasing 
or both. This would significantly reduce the stochastic heating and allow the 
computation to proceed for a longer time. 

It should also be pointed out that this discussion concerns collisional elects 
and heating in a plasma near thermal equilibrium. The results do not apply to 

581/S/1-3 
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nonthermal situations such as the ‘quiet start’ which have been used successfully 
by Byers, Birdsall et al. In this technique special orderly starting conditions are 
chosen to reduce computer noise, and instabilities are studied during the time 
interval before thermal equilibrium is reached. 

The heating to collision time ratio is a complicated function of H/X, and 
w,,DT, and we have investigated its variation in the parameter plane of these two 
variables. To limit the amount of work we have considered only regions of the 
plane which are of interest in practical cases of simulation. The region of interest 
is shown in Fig. 9. For w,,DT > 2 the explicit finite difference approximation of 

FIG. 9. The parameter plane used in the study of the heating time. The shaded regions are 
undesirable and the dotted line shows the optimum path on which (wseDT& = min [+H/Xn , 11. 

Newton’s Laws of motion is unstable and measurements confirm that this region of 
the plane cannot be used.5 Finite difference truncation errors will become serious 
if a thermal6 electron moves more than about one cell per time step, i.e., if 
vthDT/H > 1, since in this case many particles are jumping over field variations. 
Unless other considerations demand it, the lower right hand part of the plane is 
to be avoided for this reason and measurements made in this region show a 
very rapid increase in heating rate as the diagonal line vthDT/H = 1 is crossed. 
Since the resolution of the field description is H there is nothing to be gained by 
taking a time-step shorter than say one-tenth of the time for a thermal particle 

5 The reviewer has pointed out that near H/A, = 10 the computer plasma may also have been 
unstable [S, 11, 131. In our experiments this effect, if present, was masked by the rapid heating. 

6 An electron with velocity uth = dm . 
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to cross a cell. Hence, we regard as uninteresting the upper left hand part of the 
plane for which v&T/H < 0.1. 

Within the region of interest we define an optimum path shown by the dotted 
line and defined by 

(w,,DT)Opt = min[+H/An ) 11. (12) 

This line represents the most sensible choice of time-step for a given H/X, in the 
sense that if DT is decreased, there is relatively little increase in the heating time, 
whereas if DT is increased there is a fairly rapid degradation of the model (i.e., 
decrease in TV). 

Figure 10 shows the measurements of the heating to collision time ratio for the 

NGP CIC 

wpe’)T wp&T 
HNGP HCIC 

FIG. 10. Variation of the heating to collision time ratio over the (w&T, H/AD) plane for the 
NGP, CIC, HNGP, and HCIC models. The dots represent the positions of the measurements. 
The curves of constant ratio are obtained by logarithmic interpolation. 

four models. The solid dots represent the location of measured values and the 
lines are contours of (T&-J for values differing by a factor two. The region cross 
hatched is that for which (T&-J < 1 and for which the particular model cannot 
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be used because it has become dominated by stochastic heating .We note in 
comparing NGP and CIC, that the CIC heating time is about 20 times longer than 
the NGP value except near the line vthDT/H = 1, where the CIC model degrades 
more rapidly than the NGP model. In fact, it is fair to say that, for NGP, severe 
degradation of the energy conservation of the model does not take place until 
vt,,DT/H > 1. 

Hence the optimum path for the NGP model could be defined as min[H/A,, , 11; 
however in order to keep the correlation simple we shall not introduce a separate 
optimum path for the NGP model. Furthermore, a time-step for which V&T = H 
is felt to be rather large, since in a Maxwellian plasma 54 % of the particles are 
moving more than one cell per time-step whereas if v&T = H/2 this figure is 
reduced to 9 %. The effect of smoothing is to increase the region of the plane in 
which each model can be used to higher values of H/h, . 

To show the complexity of the functional relationship upon H/A, and wpeDT, 
we have fitted all the measurements on the HNGP model with a 14% RMS 
spread to the formula, 

with KS = 3.0 + 0.4. 
To reduce the information in Fig. 10 to a simple form we have plotted the heating 

to collision time ratio along the optimum path defined by Eq. (12). This is shown 
in Fig. 11 and can be represented by the formula 

where 

K4 = 2.1 for NGP 

= 6.4 for HNGP 

= 41 for CIC 

= 200 for HCIC. 

Montgomery and Nielson [12] give results in which an NGP model is observed 
to relax ten times as fast as a CIC model. If relaxation of a group of particles, 
initially having the same velocity, to a maxwellian distribution is considered to be 
due solely to binary collisions, as it is in a real plasma, this result might appear 
to contradict the results of this paper which claims that the collisional time for 
NGP and CIC models are approximately the same. 

There is however no contradiction because it must be remembered that in the 
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0.1 I IO 100 
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FIG. 11. The heating to collision time ratio along the optimum path (w&T),~ = tin 
[*H/X,, 11 as a function of H/AD for the NGP, HNGP, CIC and HCIC models. 

computer plasma the error fields that cause stochastic heating are also present, 
and that these fields cause a dispersion in velocity space which will be interpreted 
as a relaxation of the velocity distribution. It is therefore quite consistent with the 
results of this paper to find a large difference between the relaxation rates of 
NGP and CIC even though the binary collisional effects are similar. The faster 
relaxation of the NGP model being due to the larger stochastic error fields in the 
NGP model, which is in agreement with the heating-time results given in 
paper. The fact that Montgomery & Nielson [12] find a deterioration in ene 
conservation in addition to more rapid thermalisation when NGP is used, siphons 
this explanation. 

Since stochastic fields cause relaxation it is not possible to use the thermalisation 
time as a measure of collisional effects in a system with any significant stochastic 
heating. Our measurements of collision times have therefore been based on. the 
slowing-down time r, which-since the mean velocity of a beam is not altered by 
random error fields-is not affected by stochastic heating ~ 

Spatial Correlation 

Computer models permit one to measure properties of a p1asm.a that are not 
readily accessible to measurement in a real plasma. One such property is Debye 
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shielding which we have measured from the spatial correlation of the electric-field. 
We have obtained the auto-correlation function C(Ali) by taking the Fourier 

transform of the measured spectral energy density Ex2(k). 
From Eq. (8) we have the expected form of the spectral density 

E2(k*'kd cc [l + (,&2 ; &2)A,2] * (15) 

We elect to observe the variation in k, only and set k, = 0 then 

E~2(kJ Oc [l + ;$2XD2] (16) 

with k, = 2rp/(mH), p = 1, 2 ,..., m/2 on the finite (m x m) mesh of the model. 
We note that the k, = 0, k, = 0 harmonic of the potential which is a constant 
everywhere makes no contribution to the electric field and hence the p = 0 term 
is omitted. 

For the Fourier transform of (16) we take the finite Cosine transform 

ml2 

C(Ai) cc C Ea2(p) cos(2vpAijm) 1 < Ai < m/2. (17) 
P=l 

Substituting (16) into (17) and evaluating the sum analytically to infinity one 
obtains approximately 

C(Ai)cc --!+-a 
1 cosh[ol - Ai(H/X,)] 

2 2 sinh 01 (18) 

where 01 = (m/2)(H/hD) is the number of Debye lengths across half the width 
of the system. This value will be large (~5 or more) in a realistic simulation. 

Expanding (18) for large 01 one obtains 

then 

and 

C(Ai) CC -1 + OI&-‘~~“@/~, 

c(L3i)= 
e-Ai(Hl~~) _ a-l 

C(O) 1 - 01-l (19) 

c(m/2)= 
e-e - a-1 1 

C(O) 
1-&=-J-- 

Thus the initial decay of C(Ai)/C(O) is exponential about an origin at - l/(a - l), 
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and 01 can be determined from C(m/Z)/C(O). Then the measured Debye le~~~~ 
designated by a star, is 

mH AD+=--. 
2 01 

At every time step the electric field is obtained at all points on the mesh from 

The k, = 0 amplitude is obtained by summing over all j 

m-1 

E,(i, k, = 0) = 1 E,(i, j) 
j=O 

and the spectral density in k, is obtained by Fourier analysis of (22) in the form 

ml2 m/2-1 
E,(i, k, = 0) = c c(p) cos(2rpi/m) i c s(p) sin(2Tpi/m), 

lo=1 g=1 

where c(p) and s(p) are the amplitudes of the sine and cosine components. 
The spectral density is then 

&2(kc) = Ejc2(p) = C”(P) + s2tp>, cw 

where k, = 2rrp/(mH) and p = 1, 2,..., m/2. The correlation function is then 
obtained by the cosine analysis (17). 

The correlation function is a statistical concept and sensible results are cmly 
obtained if averages are taken over a large number of measurements. A running 
average of the spectral density (23) is kept and updated at every time step, and the 
correlation function is calculated from the current average of the spectral density 
measurements. A running average of these measurements of the correlation is kept. 

Figure 12 gives the correlation function obtained after 2000 steps in a case 
(P38) with N, = 96, H/X, = 0.12 and w,,DT = 0.16 using the RNGP model. 
This case was selected because the particle size and heating errors are small and one 
might expect a good measurement of Debye shielding. The form of the measured 
function is clearly that expected from Eq. (19) and we obtain the measurement 

C(n/Z)/C(O) = -0.24 

a = 5.16 
n = 64 

and 

xJJ* = 0.997hn . 
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SPECTRAL DENSITY 

SPATIAL CORRELATION 

FIG. 12. Measurement of the spectral density and spatial correlation for case P38 after 2000 
steps using the HNGP model. 01 = (m/2)(IS/hD) for an m x m mesh. 

The exceptional accuracy of this measurement is certainly fortutious and we 
find that good measurements cannot be obtained in the presence of very much 
computer noise. It does, however, show the feasibility of such measurements on a 
computer plasma. To indicate the scatter of measurements we list other values 
obtained for systems that had little heating, 

CIC, &,*/AD = 0.969@%0), 0.995@‘81), 

NGP, &,*/A, = LlO(P83), 0.63@2), 

HNGP, it,-,*/& = 1.45@59), 0.987(P62). 
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V. CHOICE OF MODEL 

The results obtained in the previous sections can be used to guide the choice of 
model in simulations of a near-thermal plasma. The basis of the choice will be the 
cost in computer time of simulating a collisionless plasma for a given number of 
plasma periods using a given number of mesh points. The cost will be assessed on 
the basis of the number of arithmetic operations involved and it will be assumed 
that a plasma may be regarded as collisionless up to a time equal to the collision 
time of the model. 

The number of particles used must be selected on the basis of the number of 
collisionless plasma periods P that are required using Eq. (6), 

P = (Ts/Tps) = r&2 + W2)/Kl & 

Then the number of particles necessary in a region of area E2. is 

N = nL2 = KlPL2/(h,,2 + W2). 

The time step used will be chosen from the optimum path on the basis of the 
value of H/h, using Eq. (12) 

The number, S, of steps required is then 

If we let KF, (model) be the cost 
particle then the total cost is 

C = K$N 

of computing for a given model per step per 

2nK,KlP2(L/H)z 
= (w,,DT)opt (Gblf02 + W/~)2) . 

(271 

We note that the cost is proportional to the square of the number of collisionless 
plasma periods required and to the number of cells of the mesh. Hence we compare 
the cost per square collisionless plasma period per mesh cell which is 

C/P2/(L/H)2 = 
2n-K5Kl 

minCW/b , ll(@13lff)~ + W/H>3 . 
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This function is plotted in relative units for the different models as a function of 
(H/h,) in Fig. 13. Based on the number of computer operations we have taken 
K,(CIC or HCIC) = 5K, (NGP or HNGP) [2]. Because of this factor the NGP and 
HNGP models are always cheaper if they can be used. However, the noise in these 
models prevents their being used for large values of (H/X,). If we assume that a 
model can be used provided the heating to collision time ratio (7&-J is greater 
than 10 (and therefore the total energy conservation in a collision time better 
than 2.5 %) then the models may only be used on the solid parts of the curves. 

‘L- HNGP 

NGP HNGP CIC HCIC 

0.1 I , ,,I I,,, I I 
0.1 I IO 

H/An 

FIG. 13. The cost per square collisionless plasma periods per mesh cell in relative units for 
the NGP, CIC, HNGP, and HCIC models. For the solid parts of the curves (Q&,) > 10 and 
the total energy conservation in a collision time is better than 2.5 %. For the dotted part of the 
curve 10 > (7&J > 1 and total energy conservation in a collision time is between 25 % and 
2.5 %. Assuming that 2.5 % conservation is required, the range of H/X, for which the model 
most economic is shown. 

If in addition we only use smoothing when the unsmoothed model is too noisy, 
in order to keep as much spatial resolution as possible, then we find that there is a 
favoured zone of (H/h,) where each model is cheapest. This is given by the tableau 

0 +- NGP + 0.45 c HNGP + 0.8 +- CIC -+ 2.0 +- HCIC -+ 4.5 

where the name of the model is written between the values of H/h, for which it is 
best suited. 

If one is less conservative and allows computing up to a (T~/~J = 1 equivalent 
to a total energy conservation in a collision time of 25 %, then the dotted parts of 
the curves of Fig. 13 may be used and the favoured ranges of (H/X,) for the different 
models are 

0 +- NGP --+ 1.5 t HNGP --f 2.5 + CIC -+ 6.5 +- HCIC -+ 14. 
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Under these circumstances none of the models considered here can be used for 
H/h, > 14. 

The value used for K5 is the theoretical best value and would require very efficient 
coding to obtain. Reported values [2] for the ratio KS (CIC)/K5 (NGP) are more like 
2 for straight unoptimized Fortran. However, one will note that provided this ratio 
is greater than unity, as it certainly is, the choice of model is unaffected. We have 
also ignored the cost of smoothing in the HNGP and IICIC curves as this is done 
on mesh points rather than particles. Usually but not necessarily, there will be 
considerably more particles than mesh’ points and the time to smooth will be 
negligible compared with the time to move the particles. If this is not the case it is 
easy to make an appropriate correction but again it is unlikely to effect the choice 
of model. 

VI. CONCLUSION 

We have measured the heating and collision time in four computer models of 
a thermal plasma and obtained empirical formulae for the results. Some com- 
parison with theoretically expected results has been given. We conclude that a 
finite width must be attributed to the NGP particle and that the collision rate of 
the NGP and CIC models are the same within experimental error. As is well known 
the CIC model is much quieter and the heating time for the CIC model is -20 times 
that for the NGP model. This allows the CIC model to be used for much larger 
values of H/AD and hence for denser and colder plasmas. On the basis of t 
computing time required to calculate for a given number of collisionless plasma 
periods, we determine that there is a range of values at (H/X,) in which each model 
is best suited. No model is found to be best for all (H/X,). Broadly speaking we 
find the NGP model best for (H/A,) < 1 and the CIC model for (H/&J > 1. An 
optimum size is found for the time step for any given H/h, . 

It is emphasized that in order to draw relatively simple conclusions from this 
work certain assumptions have necessarily had to be made that may not be valid 
in a particular case. For example, all the results apply directly only lo a plasma 
near thermal equilibrium and do not therefore include non-equilibrium situations 
such as the ‘quiet start.’ Furthermore we have assumed that the calculation takes 
place entirely within the core store of the computer and hence do not include the 
effects of using backing store for particle co-ordinates or the potential mesh For 
large calculations particular in 30 backing store will almost certainly be necessary, 
in which case considerations of the efficiency of its use may well outway the con- 
siderations given here. In any case the reader is invited to take the raw experimental 
data given in Figs. 7, 8, and 10 and draw conclusions appropriate to his particular 
situation. 
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